PWA Software Pages

Contents

PWA Software Pages#

GPLv3+ license Documentation build status Spelling checked

Warning

These pages are under development.

The PWA Software Pages serve two purposes:

  1. They aim to bring together the many Partial Wave Analysis frameworks out there on the market through interlinked documentation.

  2. They provide a dynamic platform to collect and maintain knowledge on both PWA theory and software tools.

Introduction#

Warning

These pages are under development.

While the Standard Model provides an incredibly accurate description of the most fundamental constituents of matter, it remains difficult to describe interactions at the level of bound states (hadrons). This is because the fundamental force that dominates at this range―the strong force―is characterized by an asymptotic freedom: it has a strong coupling constant at low momentum transfer.

One the one hand, this asymptotic behavior of the strong force forces quarks to bound together in colorless groups (color confinement), giving particle physicists an amazingly varied spectrum of quark combinations to study. On the other, the asymptotic running of the coupling constant makes it almost impossible to predict from first principles how bound states of quarks interact at lower energies.

Theoreticians have developed several descriptive models and numerical tools (lattice QCD most importantly), but these models often rest on several assumptions or fail to describe larger systems. It therefore remains important to study particle interactions at the lower energies.

Partial Wave Analysis is a collection of techniques that allows us to perform these studies.

Todo

  • Importance of decomposing interactions

  • Strong QCD coupling constant at low momentum transfer

  • Cannot compute intermediate states from theory

  • Need to collect properties: mass, width, spin, parity

Scattering theory#

Tip

An extensive, chronological lists of publications on scattering theory can be found here.

Transition amplitude#

Todo

  • Amplitudes and intensities

  • Scattering operator \(S\) (S-matrix)

  • Lead-up to \(T\)-matrix (transition operator)

  • Distinction dynamical part and angular part

Partial waves#

Todo

  • Separating out angular and radial wave functions using Legendre polynomials

  • What we can see from this and how it relates to analysis techniques

  • (?) Difference with amplitude analysis

  • Possible initial states: 1, 2, and multi-body

  • Suitable for propagation, not re-scattering

Isobar model#

Mandelstam variables#

Hide code cell source
import matplotlib.pyplot as plt
from feynman import Diagram

fig, ax = plt.subplots(1, 3, figsize=(9, 3), frameon=False, tight_layout=True)
fig.patch.set_visible(False)
for a in ax:
    a.axis("off")
    a.set_xlim(0, 1)
    a.set_ylim(0, 0.8)

s_channel = Diagram(ax[0])
# Vertices
v_p1 = s_channel.vertex(xy=(0.1, 0.7), marker="")
v_p2 = s_channel.vertex(tuple(v_p1.xy), dy=-0.6, marker="")
v_p3 = s_channel.vertex(tuple(v_p1.xy), dx=0.8, marker="")
v_p4 = s_channel.vertex(tuple(v_p3.xy), dy=-0.6, marker="")
v1 = s_channel.vertex(tuple(v_p1.xy), dx=0.2, dy=-0.3, marker="")
v2 = s_channel.vertex(tuple(v_p3.xy), dx=-0.2, dy=-0.3, marker="")
# Lines
p1 = s_channel.line(v_p1, v1, arrow=False)
p2 = s_channel.line(v1, v_p2, arrow=False)
interaction = s_channel.line(v1, v2, style="dotted", arrow=False)
e4 = s_channel.line(v2, v_p3, arrow=False)
e5 = s_channel.line(v_p4, v2, arrow=False)
# Labels
v_p1.text("$p_1$", x=-0.06, y=0)
v_p2.text("$p_2$", x=-0.06, y=0)
v_p3.text("$p_3$", x=+0.06, y=0)
v_p4.text("$p_4$", x=+0.06, y=0)
s_channel.text(0.5, 0.08, "$s$-channel", fontsize=15)
s_channel.text(0.5, 0, "$s = (p_1 + p_2)^2 = (p_3 + p_4)^2$", fontsize=12)
s_channel.plot()

t_channel = Diagram(ax[1])
# Vertices
v_p1 = t_channel.vertex(xy=(0.1, 0.7), marker="")
v_p2 = t_channel.vertex(tuple(v_p1.xy), dy=-0.6, marker="")
v_p3 = t_channel.vertex(tuple(v_p1.xy), dx=0.8, marker="")
v_p4 = t_channel.vertex(tuple(v_p3.xy), dy=-0.6, marker="")
v1 = t_channel.vertex(tuple(v_p1.xy), dx=0.4, dy=-0.15, marker="")
v2 = t_channel.vertex(tuple(v_p2.xy), dx=0.4, dy=+0.15, marker="")
# Lines
p1 = t_channel.line(v_p1, v1, arrow=False)
p2 = t_channel.line(v1, v_p3, arrow=False)
interaction = t_channel.line(v1, v2, style="dotted", arrow=False)
e4 = t_channel.line(v2, v_p2, arrow=False)
e5 = t_channel.line(v_p4, v2, arrow=False)
# Labels
v_p1.text("$p_1$", x=-0.06, y=0)
v_p2.text("$p_2$", x=-0.06, y=0)
v_p3.text("$p_3$", x=+0.06, y=0)
v_p4.text("$p_4$", x=+0.06, y=0)
t_channel.text(0.5, 0.08, "$t$-channel", fontsize=15)
t_channel.text(0.5, 0, "$t = (p_1 - p_3)^2 = (p_4 - p_2)^2$", fontsize=12)
t_channel.plot()

u_channel = Diagram(ax[2])
# Vertices
v_p1 = u_channel.vertex(xy=(0.1, 0.7), marker="")
v_p2 = u_channel.vertex(tuple(v_p1.xy), dy=-0.6, marker="")
v_p3 = u_channel.vertex(tuple(v_p1.xy), dx=0.8, marker="")
v_p4 = u_channel.vertex(tuple(v_p3.xy), dy=-0.6, marker="")
v1 = u_channel.vertex(tuple(v_p1.xy), dx=0.4, dy=-0.15, marker="")
v2 = u_channel.vertex(tuple(v_p2.xy), dx=0.4, dy=+0.15, marker="")
# Lines
p1 = u_channel.line(v_p1, v1, arrow=False)
p2 = u_channel.line(v1, v_p4, arrow=False)
interaction = u_channel.line(v1, v2, style="dotted", arrow=False)
e4 = u_channel.line(v2, v_p2, arrow=False)
e5 = u_channel.line(v_p3, v2, arrow=False)
# Labels
v_p1.text("$p_1$", x=-0.06, y=0)
v_p2.text("$p_2$", x=-0.06, y=0)
v_p3.text("$p_3$", x=+0.06, y=0)
v_p4.text("$p_4$", x=+0.06, y=0)
u_channel.text(0.5, 0.08, "$u$-channel", fontsize=15)
u_channel.text(0.5, 0, "$u = (p_1 - p_4)^2 = (p_3 - p_2)^2$", fontsize=12)
u_channel.plot();
_images/68f28312f64adacc7b95c76490334b3d7476e849ee7e1e6a9ef2533b74bda365.svg

Formalisms#

Warning

These pages are under development.

Helicity formalism#

Warning

These pages are under development.

Todo

  • Lorentz-invariance of helicity operator

  • Types

    • Two-body decay amplitude

    • Sequential two-body decay amplitude

  • Definition of angles

    • Production angle

    • Helicity angle

    • Treiman-Yang angle

    • Overview of kinematic variables

  • Dynamics:

    • Wigner-D functions

    • Clebsch-Gordan coefficients

  • Kinematic variables

  • An example

Canonical formulation#

Alignment problem#

Recommended literature:

Tensor formalisms#

Rarita-Schwinger#

Other spin formalisms#

Covariant Tensor formalisms#

[Anisovich et al., 2002]

Non-covariant tensor formalisms#

[Zemach, 1965]

Spin-projection formalisms#

Dynamics#

Warning

These pages are under development.

K-matrix#

Since scattering operator (\(S\)-matrix) formulates the transition amplitude from initial state \(\left|i\right>\) to final state \(\left|f\right>\) through \(\left<i\right|S\left|f\right>\), it is a unitary operator—probability is conserved, meaning \(SS^* = I\). Now, having defined the transition operator through \(S = I + iT\), we can introduce another operator: \(K^{-1} = T^{-1} + iI\) [Chung et al., 1995].

Todo

Explain why this new matrix interesting

Todo

Definition in terms of \(T\)-matrix

Special cases of the K-matrix#

Breit-Wigner#

Todo

Derive from \(K\)-matrix instead/as well.

A quantum mechanical state at rest with energy \(E_0\) can be described in terms of the wave function:

\[ \psi(t) = \psi_0 e^{-iE_0t} \]

Now, if we assume that the state has a decay width of \(\Gamma\), the probability density \(\psi^*\psi\) of this state can be described as:

\[ \psi^*\psi = \psi_0^*\psi_0 e^{-\Gamma t}. \]

The wave function itself then becomes:

\[ \psi(t) = \psi_0 e^{-iE_0t} e^{-\frac{\Gamma}{2} t} = \psi_0 e^{-i \left(E_0-\tfrac{i}{2}\Gamma\right) t}. \]

A particle with a finite decay width can therefore be described as a particle with complex energy:

\[ E' = E_0 - \frac{i}{2}\Gamma \]

Now, as an experimental physicist, one is interested in predicting the probability of observing the particle at energy \(E\) (we want to describe the observed invariant mass distributions). This can be achieved by applying a Fourier transform, so that \(\psi\) is described in terms of energy \(E\) (or frequency \(\omega\)) instead of time \(t\):

\[ \psi(E) \propto \psi_0 \int_0^\infty e^{i\left(E-E_0+\tfrac{i}{2}\Gamma\right)t}\,\mathrm{d}t \propto \frac{1}{\left(E-E_0\right) - \tfrac{i}{2}\Gamma} \]

The probability to observe the particle at energy \(E\) is therefore:

\[ \psi^*(E)\psi(E) \propto \frac{\frac{\Gamma^2}{4}}{\left(E-E_0\right)^2 + \frac{\Gamma^2}{4}} \]

Todo

Describe relation between \(\psi(E)\) and transition amplitude \(M\)

From this, one can see that the transition amplitude \(M\) is described by:

\[ M(E) \propto \frac{\frac{\Gamma}{2}}{\left(E-E_0\right) - i\frac{\Gamma}{2}} \]

because \(|\psi|^2\propto|M|\). This is called non-relativistic Breit-Wigner parametrization.

Todo

Describe how the relativistic Breit-Wigner formula:

\[ M(E) \propto \frac{m_0\Gamma}{m_0^2 - m_{ab}^2 - im_0\Gamma} \]

is derived and why this is important in case of \(\Gamma \gg m_0\).

Hide code cell source
from sympy import symbols
from sympy.plotting import plot

x, Gamma, E0 = symbols(R"x \Gamma E_0")
gamma2_4 = Gamma**2 / 4
breit_wigner = gamma2_4 / ((x - E0) ** 2 + gamma2_4)

plot(
    breit_wigner.subs({R"\Gamma": 0.25, "E_0": 0.75}),
    xlim=(0, 1.5),
    title="Non-relativistic Breit-Wigner",
    xlabel="$E$ (A.U.)",
);
_images/6e329061b8f893d2693e0793731d93b893d5d11f931fb65297d7cb95bed18c8d.svg

FlattƩ#

The importance of Unitarity#

Difference between resonances and bound states?#

Experimental data#

Warning

These pages are under development.

Types of experiments#

Todo

  • Formation vs production

PWA data#

Todo

  • Why are momentum tuples sufficient?

  • How to determine initial 4-momentum?

  • Observables and variables we want to compute

    • Luminosity

    • Cross-section

    • Branching fraction

    • (?) Fit fractions

Comparison with Measurements#

Miscellaneous topics#

Warning

These pages are under development.

Todo

Other topics (re-categorize!)

  • Phase-space

  • Coherent vs incoherent

  • \(P\)-vector

  • (?) \(S\)-matrix

  • (?) Spin density

  • Constituent Quark Model

    • Asymptotic freedom and color confinement

    • \(J^CP(I^G)\)

    • Multiplets categorization

    • Importance of experimental data

  • Overlapping resonances

  • Coupled channels

The Standard Model#

Warning

These pages are under development.

Leptons#

Quarks#

Constituent Quark Model#

Warning

These pages are under development.

Asymptotic Freedom#

Todo

  • Confinement property of the strong force

  • Constituent Quark Model: only colorless bound states

Mesons and Baryons#

Todo

  • Quantum numbers (\(J^{CP}(I^G)\))

    • baryon number \(B\)

    • hypercharge \(Y\)

    • charge \(Q\)

    • orbital angular momentum \(L\)

    • total spin \(J\)

    • parity \(P\)

    • charge \(Q\)

    • isospin \(I\)

    • general parity \(G\)

  • multiplets

    • pseudoscalar mesons

    • vector mesons

Overview of latest insights#

Warning

These pages are under development.

Todo

  • Exotic states

  • Glueballs

PWA Frameworks#

Warning

These pages are under development.

Software inventory#

Amplitude analysis projects

The following frameworks or projects are specifically designed to do amplitude analysis. The table is built from this YAML file and can be updated here.

Project Collaboration Since Latest commit C++ Python Julia Cuda
AmpGen CLEO / LHCb 2018 01/2024 āœ“
AmpTools BESIII / GlueX 2011 11/2023 āœ“ āœ“
BruFit CLAS12 2020 01/2022 āœ“
ComPWA (C++) 2012 01/2024 āœ“
ComPWA project
  • QRules
  • AmpForm
  • TensorWaves
  • 2020 04/2024 āœ“
    cFit 2012 05/2018 āœ“
    FDC-PWA BESIII 2000 āœ“
    GPUPWA BESIII 2011 āœ“
    HAMMER 2016 08/2022 āœ“ āœ“
    Ipanema 2017 03/2019 āœ“ āœ“
    Laura++ LHCb 2013 āœ“
    Mint2 2016 01/2020 āœ“
    Pawian BESIII / PANDA 2010 03/2024 āœ“
    PyPWA JLab 2014 05/2023 āœ“
    Rio++ LHCb 2016 āœ“
    ROOTPWA COMPASS 2009 06/2020 āœ“ āœ“ āœ“
    TARA Crystal Barrel 1999 āœ“
    TensorFlowAnalysis
  • AmpliTF
  • TFA2
  • LHCb 2016 10/2023 āœ“
    TF-PWA BESIII / LHCb 2019 03/2024 āœ“
    ThreeBodyDecays.jl LHCb 2019 03/2024 āœ“

    General fitter packages

    The following packages do not have functionality for amplitude building, but can do fits with high performance. The YAML database for this table can be updated here.

    Project Since Latest commit C++ Python Cuda
    GooFit 2013 06/2023 āœ“ āœ“ āœ“
    Hydra 2016 12/2023 āœ“
    RooFit 2000 āœ“
    zfit 2018 04/2024 āœ“

    Last update: 06 April 2024

    Software development#

    Tip

    Have a look at scikit-hep.org/developer and Towards a HEP Software Training curriculum! For development instructions for the ComPWA organization, see Help developing.

    Analysis techniques#

    Warning

    These pages are under development.

    Statistics#

    Warning

    These pages are under development.

    Fit techniques#

    Warning

    These pages are under development.

    Maximum likelihood#

    Coupled analyses#

    Visualization#

    Warning

    These pages are under development.

    Dalitz plot#

    Histogram#

    pwa_pages#

    import pwa_pages
    

    Helper tools used in the Jupyter notebooks of the PWA Pages.

    Submodules and Subpackages

    repo#

    import pwa_pages.repo
    

    Get information about a GitHub and GitLab repositories.

    class Repo(name: str, url: str, full_name: str, languages: dict[str, float], first_commit: datetime, latest_commit: datetime)[source]#

    Bases: object

    __eq__(other)[source]#

    Method generated by attrs for class Repo.

    filter_languages(min_percentage: float) list[str][source]#
    first_commit: datetime[source]#
    full_name: str[source]#
    property languages: list[str][source]#
    latest_commit: datetime[source]#
    name: str[source]#
    url: str[source]#
    get_repo(url: str) Repo | None[source]#

    project_inventory#

    import pwa_pages.project_inventory
    

    Helper tools for writing tables.

    class Project(*, name: str, url: str, collaboration: List[str] | str | None = None, languages: List[str] = [], sub_projects: List[SubProject] | None = None, since: int = 0)[source]#

    Bases: BaseModel

    collaboration: List[str] | str | None[source]#
    languages: List[str][source]#
    model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]#

    A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

    model_config: ClassVar[ConfigDict] = {}[source]#

    Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

    model_fields: ClassVar[dict[str, FieldInfo]] = {'collaboration': FieldInfo(annotation=Union[List[str], str, NoneType], required=False), 'languages': FieldInfo(annotation=List[str], required=False, default=[]), 'name': FieldInfo(annotation=str, required=True), 'since': FieldInfo(annotation=int, required=False, default=0), 'sub_projects': FieldInfo(annotation=Union[List[pwa_pages.project_inventory.SubProject], NoneType], required=False), 'url': FieldInfo(annotation=str, required=True)}[source]#

    Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].

    This replaces Model.__fields__ from Pydantic V1.

    name: str[source]#
    since: int[source]#
    sub_projects: List[SubProject] | None[source]#
    url: str[source]#
    class ProjectInventory(*, projects: List[Project], collaborations: Dict[str, str] = {})[source]#

    Bases: BaseModel

    collaborations: Dict[str, str][source]#
    model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]#

    A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

    model_config: ClassVar[ConfigDict] = {}[source]#

    Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

    model_fields: ClassVar[dict[str, FieldInfo]] = {'collaborations': FieldInfo(annotation=Dict[str, str], required=False, default={}), 'projects': FieldInfo(annotation=List[pwa_pages.project_inventory.Project], required=True)}[source]#

    Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].

    This replaces Model.__fields__ from Pydantic V1.

    projects: List[Project][source]#
    class SubProject(*, name: str, url: str)[source]#

    Bases: BaseModel

    model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}[source]#

    A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

    model_config: ClassVar[ConfigDict] = {}[source]#

    Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

    model_fields: ClassVar[dict[str, FieldInfo]] = {'name': FieldInfo(annotation=str, required=True), 'url': FieldInfo(annotation=str, required=True)}[source]#

    Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].

    This replaces Model.__fields__ from Pydantic V1.

    name: str[source]#
    url: str[source]#
    export_json_schema(argv: Sequence[str] | None = None) int[source]#
    fix_html_alignment(src: str) str[source]#
    load_yaml(path: Path | str) dict[source]#
    to_html_table(inventory: ProjectInventory, selected_languages: List[str], *, fetch: bool = False, min_percentage: float = 2.5, hide_columns: Iterable[str] | None = None) str[source]#

    Glossary#

    Warning

    These pages are under development.

    The glossary can be used to collect terms that require further explanation or linking to literature, but are too general or specific to deserve an own section on these pages.

    asymptotic freedom#

    The fact that the coupling constant of the strong force increases in strength for lower momentum.

    baryon#

    A particle that consists of three quarks.

    color confinement#

    The fact that quarks only exist in colorless, bound states (quark groups of which the colors add up to ā€˜white’). See also asymptotic freedom.

    coupling constant#

    Todo

    Define coupling constant

    damping factor#
    form factor#

    Often defined with the symbol \(B_{\alpha_i}\).

    formation experiment#

    Experiments where particles \(A\) and \(B\) are collided, resulting in a reaction:

    \[ A + B \to R \to C_1 + \dots + C_n, \]

    Here, \(R\) is the resonance in which one is often interested in hadron spectroscopy.

    See PDG2020, §Resonances [T13]. Related: production experiment.

    hadron#

    Particles that consist of two quarks (meson) or three quarks (baryon).

    hadron spectroscopy#

    Todo

    Define hadron spectroscopy

    hyperon#

    A baryon with at least one strange quark.

    K-matrix#

    A real, symmetric and hermitian operator that is defined from the T-matrix through \(K^{-1} = T^{-1} + iI\). See [Chung et al., 1995, Badalyan et al., 1982] and PDG2020, §Resonances [T13].

    lattice QCD#

    A numerical tool with which to study particle interactions mediated by the strong force at low momentum transfer

    meson#

    A particle that consists of two quarks.

    P-vector#

    First described in [Aitchison, 1972]. See also [Chung et al., 1995] and PDG2020, §Resonances [T13].

    production experiment#
    spectator particle#

    Experiments of the kind:

    \[ \begin{align}\begin{aligned}A + B \to R + S \to [C_1 + \dots + C_n] + S\\Z \to R + S \to [C_1 + \dots + C_n] + S\end{aligned}\end{align} \]

    Here, \(R\) is the resonance in which one is often interested in hadron spectroscopy, while \(S\) is a spectator particle. The first case is comparable to a formation experiment, while the second represents a decay process of particle \(Z\).

    See PDG2020, §Resonances [T13].

    Q-vector#

    See [Chung et al., 1995] and PDG2020, §Resonances [T13].

    Quantum Chromodynamics (QCD)#

    The theory that describes the strong force on the most fundamental level. See PDG2020, §QCD [T13].

    quark#

    Elementary particle that constitutes hadronic matter.

    Quark Constituent Model (QCM)#

    Model with which to describe and categorize matter constituted of quarks (i.e. hadrons). See [T13] (PDG2020, §Quark Model).

    resonance#

    See [T13] (PDG2020, §Resonances).

    S-matrix#
    scattering operator#

    See [Martin and Spearman, 1970], Ch.4.

    Standard Model#

    Most fundamental description of matter and forces

    strong force#

    One of the four fundamental forces of the Standard Model

    T-matrix#
    transition operator#

    The scattering operator can split into a non-interacting component \(I\) (identity operator) and a matrix \(T\) that describes the actual interactions through \(S = I + iT\). See [Martin and Spearman, 1970], Ch.4, and [Chung et al., 1995].

    Bibliography#

    Tip

    Download this bibliography as BibTeX here.

    References

    [T1]

    K.Ā Peters. A Primer on Partial Wave Analysis. arXiv, December 2004. arXiv:hep-ph/0412069.

    [T2]

    R.Ā Kutschke. An Angular Distribution Cookbook. January 1996. home.fnal.gov/~kutschke/Angdist/angdist.ps.

    [T3]

    J.Ā D. Richman. An Experimenter's Guide to the Helicity Formalism. June 1984. inspirehep.net/literature/202987.

    [T4]

    H.Ā Chen and R.-G. Ping. Coherent helicity amplitude for sequential decays. Physical Review D, 95(7):076010, April 2017. doi:10.1103/PhysRevD.95.076010.

    [T5]

    D.Ā Marangotto. Helicity Amplitudes for Generic Multibody Particle Decays Featuring Multiple Decay Chains. Advances in High Energy Physics, 2020:1–15, December 2020. doi:10.1155/2020/6674595.

    [T6]

    M.Ā Wang et al. A novel method to test particle ordering and final state alignment in helicity formalism. arXiv, December 2020. arXiv:2012.03699.

    [T7]

    M.Ā Mikhasenko et al. Dalitz-plot decomposition for three-body decays. Physical Review D: Particles and Fields, 101(3):034033, February 2020. doi:10.1103/PhysRevD.101.034033.

    [T8]

    R.Ā Aaij et al. Observation of š½/šœ“ š‘ Resonances Consistent with Pentaquark States in š›¬š‘ā° → š½/šœ“š¾ā»š‘ Decays. Physical Review Letters, 115(7):072001, August 2015. doi:10.1103/PhysRevLett.115.072001.

    [T9]

    A.Ā V. Anisovich et al. Moment-operator expansion for the two-meson, two-photon and fermion–antifermion states. Journal of Physics G: Nuclear and Particle Physics, 28(1):15–32, January 2002. doi:10.1088/0954-3899/28/1/302.

    [T10]

    C.Ā Zemach. Use of Angular-Momentum Tensors. Physical Review, 140(1B):B97–B108, October 1965. doi:10.1103/PhysRev.140.B97.

    [T11]

    S.-U. Chung et al. Partial wave analysis in š¾-matrix formalism. Annalen der Physik, 507(5):404–430, May 1995. doi:10.1002/andp.19955070504.

    [T12]

    A.M. Badalyan et al. Resonances in coupled channels in nuclear and particle physics. Physics Reports, 82(2):31–177, February 1982. doi:10.1016/0370-1573(82)90014-X.

    [T13]

    Particle Data Group et al. Review of Particle Physics. Progress of Theoretical and Experimental Physics, 2020(8):083C01, August 2020. doi:10.1093/ptep/ptaa104.

    [T14]

    I.J.R. Aitchison. The š¾-matrix formalism for overlapping resonances. Nuclear Physics A, 189(2):417–423, July 1972. doi:10.1016/0375-9474(72)90305-3.

    [T15]

    A.Ā D. Martin and T.Ā D. Spearman. Elementary Particle Theory. North-Holland Pub. Co, Amsterdam, 1970. ISBN:978-0-7204-0157-8.

    Further reading

    • C.Ā Amsler. The Quark Structure of Hadrons: An Introduction to the Phenomenology and Spectroscopy. NumberĀ 949 in Lecture Notes in Physics. Springer International Publishing : Imprint: Springer, Cham, 1st ed. 2018 edition, October 2018. ISBN:978-3-319-98527-5. doi:10.1007/978-3-319-98527-5.

    • D.Ā M. Asner et al. Dalitz Plot Analysis Formalism. In Review of Particle Physics: Volume I Reviews. January 2006. doi:10.1093/ptep/ptaa104.

    • E.Ā Byckling and K.Ā Kajantie. Particle Kinematics. Wiley, London, New York, 1973. ISBN:978-0-471-12885-4.

    • S.-U. Chung. Formulas for Angular-Momentum Barrier Factors (Version II). Technical Report, Brookhaven National Laboratory, March 2015. physique.cuso.ch/fileadmin/physique/document/2015_chung_brfactor1.pdf.

    • S.-U. Chung. Spin Formalisms (Updated Version). Technical Report, Brookhaven National Laboratory, July 2014. suchung.web.cern.ch/spinfm1.pdf.

    • B.Ā Ketzer, B.Ā Grube, and D.Ā Ryabchikov. Light-Meson Spectroscopy with COMPASS. Progress in Particle and Nuclear Physics, December 2019. doi:10.1016/j.ppnp.2020.103755.

    • E.Ā Leader. Spin in Particle Physics. NumberĀ 15 in Cambridge Monographs on Particle Physics, Nuclear Physics, and Cosmology. Cambridge University Press, Cambridge ; New York, 2001. ISBN:978-0-521-35281-9.

    • X.-Y. Li, X.-K. Dong, and H.-J. Jing. Spin-orbit amplitudes for decays with arbitrary spin. Nuclear Physics A, 1040:122761, December 2023. doi:10.1016/j.nuclphysa.2023.122761.

    • R.Ā G. Newton. Scattering Theory of Waves and Particles. Springer, New York, 2nd edition edition, 1982. ISBN:978-3-540-10950-1.

    • S.Ā Weinberg. The Quantum Theory of Fields, Volume 1: Foundations. Cambridge University Press, Cambridge ; New York, 1995. ISBN:978-0-521-55001-7.